surface treatment in plasma
Plasma Nitriding
A process that increases surface hardness and effectively protects against wear: With plasma nitriding, we offer a high-performance treatment for mechanically stressed metal components.
Our extensive capacities and short lead times allow us to process all orders quickly and efficiently. Every day several processes start – so we are able to quickly implement even short-term requests at any time.
Single part, series or particularly large parts plasma nitriding? No problem, we will implement your order quickly, reliably and in the highest quality.
Plasma nitriding: the process
Plasma nitriding (also known as ionitriding, pulse plasma nitriding, as well as cold nitriding or plasma hardening) is a thermochemical heat treatment process that is used to increase the reliability and wear resistance of mechanically stressed metal components. Fatigue strength as well as corrosion protection of materials are improved by surface treatment in a particularly gentle way. Under the influence of heat, plasma nitriding causes a chemical transformation of the surface layer by diffusion of nitrogen, which forms nitrides together with the material of the treated material. This leads to increased surface hardness and significantly improved resistance to wear.
Compared to conventional hardening processes, the workpieces are treated at significantly lower temperatures, which ensures high dimensional accuracy in this type of heat treatment. Since, as a consequence, a costly reworking of the workpieces in the surface hardened condition is no longer necessary or can be reduced to a minimum, plasma nitriding allows additional cost savings to be realized within the process chain.
The material to be treated can often be manufactured to final dimensions in the soft state and can be finished after heat treatment in the plasma with little or no reworking. Furthermore, very low tempered, heat- treated steels can be treated without loss of core strength.
In principle, nitriding is possible with various processes. Well known besides plasma nitriding are bath nitriding and gas nitriding. Among the hardening processes, plasma nitriding has a special position due to its reproducibility, environmental compatibility and energy efficiency.
Plasma nitriding: the advantages
- low process temperatures
- low-distortion process
- Minimization or elimination of rework
- Final cleaning and surface activation of components in plasma
- good treatability of high-alloy steels and stainless steel
- Layer structure can be adapted to the stress
- Layers are less brittle and porous than with gas and bath nitriding
- shorter treatment times than (with the) gas nitriding
- no subsequent cleaning necessary
By controlling the layer structure in a targeted manner, plasma nitriding allows the treatment result to be adapted advantageously to the stress. Compared to conventional hardening processes, heat treatment in plasma takes place at significantly lower temperatures. Mechanical post-processing is often no longer necessary due to the resulting minimized distortion.
Physical principles of plasma nitriding
The physical principles of plasma nitriding lead to the characteristic features of the process and the necessary plant technology:
Plasma nitriding is a vacuum-supported process. The treated workpieces form the cathode, the furnace wall the anode. After evacuation of the loaded recipient, an electric field is applied between the charge and the furnace wall. The supplied treatment gas splits up in the electric field and is ionized. A conductive gas is formed – the plasma. The nitrogen ions contained in it are accelerated due to the current flow in the direction of the cathode and hit the workpiece surfaces with high energy. This leads to:
- Fine cleaning of the surfaces by sputtering off foreign atoms
- Dissolving of passive layers (e.g. on stainless steels or stainless steel and titanium)
- Activation of the surface
- Heating of the furnace charge to be nitrided
- Diffusion of the nitrogen into the workpiece surface
When the treatment temperature is reached, the holding time begins. This depends on the type of material and the desired nitriding hardness depth. Usual holding times for plasma nitriding are 12-50 hours. Compared to gas nitriding, plasma nitriding requires only about half the holding time.
After the corresponding treatment time, pressure equalization is achieved by flooding with a gas. Afterwards the batch cools down in a controlled manner and the finished workpieces can be removed at low temperature.
The nitriding layer and its function
The nitriding layer consists of the outer bonding layer (VS) and the diffusion layer (DS) underneath. The compound layer is composed of iron nitrides – the nitrogen-rich ε nitride Fe2-3N and the iron-rich γ`-Nitride Fe4N. In comparison to gas nitriding, the compound layer produced by plasma nitriding is more compact, has fewer pores and therefore has better layer properties.
Below the VS is the diffusion zone (DS), which is composed of the base material with precipitated nitrides. The more nitride-forming elements are present in the steel, the greater the attainable surface hardness. This explains why unalloyed steels only achieve surface hardnesses of 250-300 HV, low-alloy steels 600-700 HV and nitriding and high-alloy steels 800-1200 HV.
The characteristic value nitriding depth NHT is defined as the edge distance at which core hardness +50 HV is present (according to DIN50190 Part 3). Usual NHT are:
- up to 0.8 mm for unalloyed and low-alloy steels
- up to 0.15 mm for high-alloy steels and stainless steel
The depth that can be reached and the time in which it can be reached is largely determined by the material used, the treatment temperature and the treatment time.
If particularly thick compound layers are required, plasma nitrocarburizing is recommended as an alternative to plasma nitriding. To increase the corrosion resistance of low and medium alloyed materials, there is also the possibility of post-oxidation. With the help of this additional step, the corrosion protection can be further increased after plasma nitriding.
Nitridable steels and treatment results after plasma nitriding
The following treatment results of plasma nitriding refer to standard and long-term treatments and frequently used materials. A higher or lower nitriding hardness depth (NHT) and compound layer thickness (VS) can be achieved by special treatments.
In general, any steel can be nitrided. We would be pleased to advise you on the possibilities and individual advantages – please contact us!
nitriding steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
32 CrMoV 12-10 | 1.7765 | 750 – 1.000 | 0,2 – 0,6 | 4 – 15 |
34 CrAl 6 | 1.8504 | 900 – 1.200 | 0,2 – 0,5 | 4 – 10 |
34 CrAl S 5 | 1.8506 | 900 – 1.200 | 0,2 – 0,6 | 4 – 10 |
34 CrAlMo 5 | 1.8507 | 900 – 1.200 | 0,2 – 0,5 | 4 – 10 |
41 CrAlMo 7 | 1.8509 | 800 – 1.000 | 0,2 – 0,5 | 4 – 10 |
31 CrMo 12 | 1.8515 | 800 – 1.100 | 0,2 – 0,5 | 4 – 15 |
31 CrMoV 9 | 1.8519 | 750 – 1.000 | 0,2 – 0,5 | 4 – 15 |
31 CrAlV 79 | 1.8523 | 900 – 1.250 | 0,2 – 0,6 | 4 – 10 |
34 CrAlNi 7 | 1.8550 | 900 – 1.250 | 0,2 – 0,6 | 4 – 15 |
case hardening steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
C 15 | 1.0401 | 300 – 450 | 0,2 – 0,6 | 4 – 15 |
C15 E / Ck 15 | 1.1141 | 250 – 350 | 0,2 – 0,6 | 4 – 15 |
21 MnCr 5 | 1.2162 | 600 – 750 | 0,3 – 0,6 | 4 – 15 |
14 NiCr 15 | 1.5752 | 500 – 650 | 0,2 – 0,6 | 4 – 8 |
15 CrNi 6 | 1.5919 | 500 – 750 | 0,2 – 0,8 | 4 – 8 |
20 NiCrMo 2-2 | 1.6523 | 650 – 700 | 0,2 – 0,6 | 4 – 8 |
18 CrNiMo 7-6 | 1.6587 | 600 – 700 | 0,2 – 0,6 | 4 – 8 |
16 MnCr 5 | 1.7131 | 600 – 750 | 0,2 – 0,8 | 4 – 15 |
16 MnCrS 5 | 1.7139 | 600 – 750 | 0,2 – 0,8 | 4 – 15 |
20 MnCr 5 | 1.7147 | 600 – 800 | 0,2 – 0,8 | 4 – 15 |
20 CrMo 5 | 1.7264 | 850 – 950 | 0,2 – 0,8 | 4 – 15 |
heat treatable steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
C 30 E | 1.1178 | 300 – 450 | 0,2 – 0,6 | 4 – 15 |
C 35 E | 1.1181 | 300 – 500 | 0,2 – 0,6 | 4 – 15 |
C 45 E / Ck 45 | 1.1191 | 300 – 550 | 0,2 – 0,6 | 4 – 15 |
C 60 E / Ck 60 | 1.1221 | 300 – 550 | 0,2 – 0,6 | 4 – 15 |
40 CrMnMo 7 | 1.2311 | 700 – 850 | 0,2 – 0,6 | 4 – 15 |
40 CrMnMoS 8-6 | 1.2312 | 700 – 850 | 0,2 – 0,6 | 4 – 15 |
45 NiCr 6 | 1.2710 | 600 -800 | 0,2 – 0,5 | 4 – 8 |
55 NiCrMoV 6 | 1.2713 | 600 – 700 | 0,2 – 0,6 | 4 – 8 |
30 CrNiMo 8 | 1.6580 | 600 – 800 | 0,2 – 0,5 | 3 – 10 |
34 CrNiMo 6 | 1.6582 | 600 – 800 | 0,2 – 0,5 | 3 – 10 |
34 Cr 4 | 1.7033 | 500 – 600 | 0,2 – 0,5 | 4 – 15 |
25 CrMo 4 | 1.7218 | 600 – 700 | 0,2 – 0,5 | 4 – 15 |
34 CrMo 4 | 1.7220 | 500 – 600 | 0,2 – 0,5 | 4 – 15 |
42 CrMo 4 | 1.7225 | 600 – 750 | 0,2 – 0,5 | 4 – 15 |
30 CrMoV 9 | 1.7707 | 850 – 950 | 0,2 – 0,6 | 4 – 15 |
39 CrMoV 13-9 | 1.8523 | 800 – 950 | 0,2 – 0,5 | 4 – 8 |
Toolox33, SP 300 | siehe 1.2312 | |||
Toolox 44 | 800 – 1.000 | 0,2 – 0,6 | 4 – 8 | |
ETG® 100 | 1.8523 | 400 – 650 | 0,2 – 0,6 | 4 – 8 |
construction steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
S 235 JR | 1.0037 | 250 – 400 | 0,2 – 0,6 | 4 – 10 |
S 235 | 1.0038 | 200 – 350 | 0,2 – 0,6 | 4 – 10 |
E 335 | 1.0060 | 300 – 550 | 0,2 – 0,6 | 4 – 10 |
S 235 J2G3 | 1.0116 | 350 – 400 | 0,2 – 0,6 | 4 – 10 |
S 355 J2+N | 1.0570 | 300 – 550 | 0,2 – 0,6 | 4 – 10 |
S 355 J2H | 1.0576 | 300 – 550 | 0,2 – 0,6 | 4 – 10 |
tool steel, unalloyed
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
C 105 W 1 | 1.1545 | 550 – 650 | 0,2 – 0,8 | 4 – 8 |
C 80 W 2 | 1.1625 | 550 – 650 | 0,2 – 0,8 | 4 – 8 |
hot-work steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
X 38 CrMoV 5 1 | 1.2343 | 900 – 1.250 | 0,2 – 0,4 | 4 – 8 |
X 40 CrMoV 5 1 | 1.2344 | 900 – 1.250 | 0,2 – 0,4 | 4 – 8 |
X 32 CrMoV 3 3 | 1.2365 | 800 – 1.000 | 0,2 – 0,4 | 4 – 8 |
X 3 NiCoMoTi 18-9-5 | 1.2709 | 800 – 1.200 | 0,15 – 0,3 | 2 – 4 |
X 15 CrCoMoV 10-10-5 | 1.2886 | 1.000 – 1.200 | 0,15 – 0,3 | 2 – 4 |
cold-work steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
X 210 Cr 12 | 1.2080 | 900 – 1.200 | 0,1 – 0,15 | 2 – 4 |
62 SiMNCr 5 | 1.2101 | 500 – 600 | 0,3 – 0,6 | 4 – 8 |
X 165 CrV 12 | 1.2201 | 1.000 – 1.200 | 0,1 – 0,4 | 2 – 4 |
115 CrV 3 | 1.2210 | 350 – 500 | 0,3 – 0,4 | 4 – 8 |
26 CrMoV 9 | 1.2307 | 850 – 950 | 0,1 – 0,4 | 4 – 8 |
X 100 CrMoV 5 | 1.2363 | 800 – 1.200 | 0,1 – 0,4 | 4 – 8 |
85 CrMoV 12-6-5 | 1.2364 | 950 – 1.200 | 0,1 – 0,4 | 4 – 8 |
X 155 CrVMo 12-1 | 1.2327 | 900 – 1.200 | 0,1 – 0,4 | 4 – 8 |
X 210 CrW 12 | 1.2436 | 700 – 900 | 0,15 – 0,3 | 2 – 4 |
X 165 CrMoV 12 | 1.2601 | 900 – 1.200 | 0,15 – 0,2 | 2 – 4 |
X 60 WCrMoV 9-5 | 1.2622 | 800 – 900 | 0,1 – 0,4 | 2 – 4 |
X 45 NiCrMo 4 | 1.2767 | 650 – 900 | 0,15 – 0,5 | 2 – 4 |
90 MnCrV 8 | 1.2842 | 450 – 650 | 0,2 – 0,6 | 4 – 8 |
high-speed steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
S 10-4-3-10 | 1.3207 | 1.000 – 1.400 | 0,05 – 0,25 | ≤ 3 |
S 12-1-1 | 1.3302 | 1.200 – 1.400 | 0,05 – 0,2 | ≤ 3 |
S 6-5-2 | 1.3343 | 1.000 – 1.400 | 0,05 – 0,25 | ≤ 3 |
S 18-0-1 | 1.3355 | 1.000 – 1.200 | 0,05 – 0,2 | ≤ 3 |
bearing steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
100 MnCrW 4 | 1.2510 | 500 – 700 | 0,2 – 0,3 | ≤ 5 |
100 Cr 6 | 1.3505 | 350 – 600 | 0,2 – 0,3 | ≤ 5 |
X 102 CrMo 17 | 1.3543 | 1.000 – 1.200 | 0,1 – 0,2 | ≤ 3 |
spring steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
C 75 S / Ck 75 | 1.1248 | 350 – 550 | 0,2 – 0,6 | 4 – 8 |
60 SiMn 5 | 1.5142 | 400 – 600 | 0,2 – 0,6 | 4 – 8 |
67 SiCr 5 | 1.7103 | 500 – 650 | 0,2 – 0,6 | 4 – 8 |
50 CrV 4 | 1.8159 | 450 – 600 | 0,2 – 0,6 | 4 – 8 |
58 CrV 4 | 1.8161 | 450 – 600 | 0,2- 0,6 | 4 – 8 |
stainless and acid-proof steel
Material | Material number | Hardness HV 1 | NHT in mm |
---|---|---|---|
X 40 Cr 14 | 1.2083 | 1.000 – 1.200 | 0,15 – 0,3 |
X 38 CrMo 16 | 1.2316 | 900 – 1.200 | 0,15 – 0,3 |
X 20 Cr 13 | 1.4021 | 1.000 – 1.200 | 0,15 |
X 30 Cr 13 | 1.4028 | 1.000 – 1.200 | 0,15 |
X 46 Cr 13 | 1.4034 | 1.000 – 1.200 | 0,15 |
X 46 Cr 13 | 1.4104 | 1.000 – 1.200 | 0,15 |
X 90 CrMoV 18 | 1.4112 | 900 – 1.100 | 0,15 |
X 90 CrMoV 18 | 1.4117 | 950 – 1.200 | 0,15 |
X 35 CrMo 17 | 1.4122 | 1.000 – 1.400 | 0,15 |
X 12 CrNi 18 8 | 1.4300 | 800 – 1.200 | 0,15 |
X 5 CrNi 18 10 | 1.4301 | 800 – 1.200 | 0,15 |
X 10 CrNiS 18 9 | 1.4305 | 800 – 1.000 | 0,15 |
X 5 CrNiMo 17 12 2 | 1.4401 | 800 – 1.200 | 0,15 |
X 2 CrNiMo 18 14 3 | 1.4435 | 800 – 1.200 | 0,15 |
X 5 CrNiMo 17 13 | 1.4449 | 800 – 1.200 | 0,15 |
X 5 CrNiMo 17 13 | 1.4535 | 1.000 – 1.200 | 0,15 |
X 6 CrNiMoTi 17 12 2 | 1.4571 | 800 – 1.200 | 0,15 |
martensitic hardenening steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
X 2 NiCrMo 18 8 5 | 1.6359 | 1.000 – 1.200 | 0,15 – 0,3 | 1 – 2 |
heat resistant steel
Material | Material number | Hardness HV 1 | NHT in mm |
---|---|---|---|
X 15 CrNiSi 25 20 | 1.4841 | 800 – 1.100 | 0,1 |
X 12 CrNi 25 21 | 1.4845 | 800 – 1.100 | 0,1 |
cast iron
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
EN-GJL-150 / GG 15 | 300 – 450 | 0,2 – 0,4 | 4 – 10 | |
EN-GJL-250 / GG 25 | 350 – 500 | 0,2 – 0,5 | 4 – 10 | |
EN-GJS-400-15 / GGG 40 | EN-JS 1040 | 400 – 600 | 0,2 – 0,5 | 4 – 10 |
GGG 42 | 400 – 600 | 0,2 – 0,5 | 4 – 10 | |
EN-GJS-600-3 / GGG 60 | EN-JS 1060 | 500 – 700 | 0,2 – 0,6 | 4 – 10 |
EN-GJS-700-2 / GGG 70 | EN-JS 1070 | 500 – 700 | 0,2 – 0,6 | 4 – 10 |
machining steel
Material | Material number | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|---|
9 S 20 | 1.0711 | 200 – 300 | 0,2 – 0,6 | 4 – 8 |
9 SMnPb 28 | 1.0718 | 200 – 350 | 0,2 – 0,6 | 4 – 8 |
10 S 20 | 1.0721 | 350 – 400 | 0,2 – 0,6 | 4 – 8 |
45 S 20 / 46 S 20 | 1.0727 | 350 – 450 | 0,2 – 0,6 | 4 – 8 |
44 SMn 28 | 1.0762 | 300 – 600 | 0,2 – 0,6 | 4 – 8 |
sintered steel
Material | Hardness HV 1 | NHT in mm | VS in µm |
---|---|---|---|
Astaloy Mo | 400 – 500 | 0,1 – 0,5 | |
Sint D30 | 350 – 500 | 0,1 – 0,5 | 5 – 20 |
Sint D35 | 150 – 300 | 0,1 – 0,3 | 5 – 20 |